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ABSTRACT: The Baylis–Hillman reaction is a general and multifaceted method for C—C bond formation in organic
synthesis. Using electrospray ionization mass spectrometry in both the positive and negative ion modes, we performed
on-line monitoring of the reaction in the presence of imidazolium ionic liquids. Loosely bonded supramolecular
species formed by coordination of neutral reagents, products and the protonated forms of zwitterionic Baylis–Hillman
intermediates with cations and anions of ionic liquids were gently and efficiently transferred directly from the solution
to the gas phase. Mass measurements and structural characterization of these unprecedented species via collision-
induced dissociation in tandem mass spectrometry experiments were performed. The interception of several
supramolecular species indicates that ionic liquids co-catalyze Baylis–Hillman reactions by activating the aldehyde
toward nucleophilic enolate attack and by stabilizing the zwitterionic species that act as the main BH intermediates.
Copyright # 2006 John Wiley & Sons, Ltd.
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The Baylis–Hillman (BH) reaction (Scheme 1)1 is a useful
and general s C—C bond-forming reaction, providing a
straightforward single-step synthetic method to form
densely functionalized precursors (a-methylene-b-
hydroxy derivatives) of a great variety of natural and
non-natural products.2 The BH mechanism3 is known to
proceed by the conjugate reversible addition of a tertiary
amine catalyst, usually diazabicyclo[2.2.2]octane
(DABCO), to a Michael acceptor to produce an ammonium
enolate intermediate (Scheme 1). The nucleophilic addition
of this enolate intermediate to an aldehyde4 followed by
successive intramolecular elimination gives the final BH
adduct, an a-methylene-b-hydroxy-ester, regenerating the
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tertiary amine catalyst.5 Some BH reactions are, however,
too slow even in most favorable systems. Therefore, there is
a continuous search for more efficient BH catalysts and
optimal experimental conditions. Several nitrogen bases
such as DABCO, quinuclidine and derivatives,6 HMTA
(hexamethylenetetramine) and 1,8-diazabicyclo[5.4.0]un-
dec-7-ene (DBU) are commonly used as efficient catalysts
in BH, and other, reactions.7

The addition of inorganic salts has also been shown to
accelerate BH reactions presumably by increasing the
concentration of the intermediate enolates.8 Physical
methods such as high pressure,9 microwaves,10 and
ultrasound11 have also been proposed as efficient ways to
improve BH reaction rates. More recently, ionic liquids,12

especially those based on the 1-n-butyl-3-methylimida-
zolium cation (BMIþ), were found to accelerate BH
reactions. Such a catalytic effect has be attributed to the
inherent dual ionic-covalent nature of ionic liquids (IL)
and the stabilization of the zwitterionic intermediates
through different types of H-bonded supramolecular ion
pairs, the so-called ‘ionic liquid effect.’13 Owing to the
relatively easy deprotonation of the imidazolium ring,14

formation of imidazolium-aldehyde adducts as by-
products may eventually reduce the overall BH reaction
yield,15 but this side reaction is avoided by using 2-
methyl-1,3-dialkylimidazolium salts.16
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Scheme 1. The catalytic cycle of the BH reaction
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Electrospray ionization (ESI),17 a powerful ‘ion-fish-
ing’18 technique for mass spectrometry (MS) analysis, has
been increasingly used in chemistry and biochemistry to
probe reaction mechanisms19 and catalysis.20 Recently,21

we used ESI-MS to investigate the BH mechanism in
classical organic solvents, being able to intercept and
characterize the protonated forms of its zwitterionic
intermediates (Scheme 1). We have also demonstrated
recently that ESI is able to transfer, gently and efficiently,
small to large as well as singly to multiply charged loosely
bonded ionic liquid supramolecules to the gas phase for MS
detection and characterization.22

In the reaction of acrylates with aldehydes catalyzed by
DABCO (Scheme 2), the role of BMI.X ionic liquids in
accelerating the reaction is likely to involve stabilization
of the zwitterionic intermediates by supramolecular ion
pairing via H-bonds. Therefore, ESI-MS could be used
to monitor BH reactions co-catalyzed by ionic liquids in
the search for the supramolecular species presumably res-
ponsible for the co-catalytic effect of ionic liquids. ESI-MS
could allow the unprecedented interception of such
supramolecular species in ionic forms by ‘fishing’ them
directly from solution to the gas phase for MS analysis and
MS/MS characterization. In this communication we report
the first interception and characterization of the supramo-
lecular species, which appears to be responsible for the
co-catalytic role of ionic liquids in BH reactions.
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Our search began with the on-line monitoring by ESI-
MS23 of the reaction of 1 equivalent of methyl acrylate
(1) with 1 equivalent of 2-thiazolecarboxaldehyde (2)
catalyzed by 1 equivalent of DABCO (3) in acetonitrile in
the presence of 7 mol % of BMI ionic liquids (Scheme
2).24 The undiluted reaction mixture was directly infused
to the ESI source operating in the positive ion mode, and
cationic species were continuously screened via MS
analysis.

A variety of cationic supramolecular species
(Scheme 3) likely to be involved in the co-catalytic
role of ionic liquids in BH reactions were intercepted by
ESI-MS monitoring. As an example, Fig. 1 shows an ESI-
MS ‘snapshot’ of the BH reaction co-catalyzed by
BMI.PF6 (Scheme 2) shortly after 1 min of mixing.
Protonated forms of DABCO [3þH]þ of m/z 113 as well
as of the major BH zwitterionic intermediates [5þH]þ of
m/z 199 and [7þH]þ of m/z 312 and the final BH adduct
[4þH]þ of m/z 200 are evident, and these species have
already been detected and characterized in our previous
work.21 In the presence of BMI.PF6, however, additional
supramolecular species directly related to BMI.PF6

(Scheme 3) are also clearly detected: 8þ of m/z 252,
9bþ of m/z 483, 10bþ of m/z 543, 11bþ of m/z 596, and
12þ of m/z 338, as well as BMIþ of m/z 139 and the
[(BMI)2.PF6]þ singly charged supramolecule of m/z 423.
The same BH species, as well as analog BH-BMI(X)
supramolecular species, have also been ‘fished’ from the
reaction media when using BMI.BF4 and BMI.CF3CO2 as
the co-catalysts.

Scheme 3 shows the ionic species with their respective
m/z ratios which were gently transferred from solution to
the gas phase by ESI operating either in the positive or
negative ion mode. Each of the intercepted gaseous
supramolecular species was then characterized via mass-
selection in the quadrupole Q1, followed by collision-
induced dissociation (CID) with argon in the collision cell
q2, and MS analysis of fragment ions using an orthogonal
high-resolution and high-accuracy TOF-MS analyzer.
These loosely bonded species show, as expected, relatively
low resistance toward CID (5–10 eVenergy collisions with
argon promote prompt dissociation) and structurally
diagnostic dissociation chemistry.
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Figure 1. ESI(þ) mass spectrum for the BH reaction mixture of methyl acrylate 1 with 2-thiazolecarboxaldehyde 2 co-catalyzed
by DABCO 3 and the ionic liquid BMI.PF6. Note that the unidentified ion of m/z 294 has also been detected in the BH reaction
performed without the ionic liquid,21 and that the ion of m/z 167 is likely a fragment of the ion of m/z 252, see text. The ion
marked as [S2þH]R is the acetonitrile (S, solvent) proton-bound dimer. The intensity scale has been blown up 20 times to show
the peak at m/z 596
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Dissociations of [3þH]þ of m/z 113, [5þH]þ of m/z
199, and [4þH]þ of m/z 200 have previously been
described and discussed.21 The supramolecular species
8þ of m/z 252 (Fig. 2a) dissociates probably through the
loss of a neutral thiazole molecule to form the fragment
ion of m/z 167 (most likely a carbon monoxide derivative
of BMIþ whose structure is tentatively assigned in
Fig. 2a) which, in turn, dissociates by the loss of a neutral
butene molecule to yield its lower homologue of m/z 111.
Note that this dissociation route occurring in the ESI
source (‘in-source CID’) is probably what forms the ion
of m/z 167 detected in the spectrum of Fig. 1. The BF�

4

bound dimer of BMIþ and [5þH]þ, that is, 9aþ of m/z
425 (Fig. 2a), dissociates to yield both BMIþ of m/z 139
and [5þH]þ of m/z 199. The X-bound dimers of
[5þH]þ, that is, ions 10 as exemplified for 10aþ of m/z
485 in Fig. 2c, give [5þH]þ of m/z 199 exclusively. The
supramolecular species 11, as exemplified by 11b of m/z
596 (Fig. 2d), that is, the PF6

� bound dimer of BMIþ and
[7þH]þ, dissociate predominantly to [7þH]þ of m/z
312, and to a lesser extent to BMIþ of m/z 139.
Subsequently, the fragment ion [7þH]þ of m/z 312 loses
DABCO to form the protonated BH adduct [4þH]þ of
m/z 200.

A careful analysis of these results permitted us to make
some suggestions in order to rationalize the role of the
Copyright # 2006 John Wiley & Sons, Ltd.
ionic liquids in the rate of the Baylis–Hillman reaction.
Apparently there are synergic associations of effects,
which seem to be responsible for the observed increased
reaction rate. Based on the intercepted species it is clear to
us that ionic liquids participate in almost all steps of the
catalytic cycle of the Baylis–Hillman reaction, which
could explain the results reported independently by
Afonso,13b Kim,13d and Aggarwal.15 For instance, the
interception of 8þ of m/z 252 (Scheme 3) could be
considered as evidence that the ionic liquid acts in the first
step of the cycle like a Lewis acid, which complexes with
the aldehyde thus contributing to the increase in the
electrophilicity of the carbonyl carbon. This effect seems
to be more pronounced for aromatic than for aliphatic
aldehydes, which is in agreement with the results reported
by Afonso.13b,16

The rate of the Baylis–Hillman reaction is likely
related to the stabilization of the ‘enolate intermediate’
resulting from the Michael addition of the tertiary amine
on the acrylate activated double bond. Ionic liquids also
participate in this step (see species 9þ and 13�, Scheme 3)
and probably stabilize this intermediate. Both intermedi-
ates (5þ and 9þ) play a fundamental role in the catalytic
cycle of the reaction, more specifically in the rate-
determining step. Finally, the ionic liquids complex with
the product of the reaction which should shift the
J. Phys. Org. Chem. 2006; 19: 731–736
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equilibrium towards the adduct formation. If we associate
the Lewis acid-like effect of the ionic liquids exerted over
the aldehyde, the stabilization of the ‘intermediate
enolate’ and the stabilization of the final products, the
perceived overall effect is the huge increasing of the
reaction rate.

To evaluate the difference in the catalytic properties of
each ionic liquid, a reaction using a mixture of three BMI
ionic liquids (Scheme 2) was also monitored (5 mol% of
each co-catalyst). The goal of this competitive experiment
was to evaluate the co-catalysis efficiency by determining
which ionic liquid would best stabilize the BH
intermediates. ESI-MS snapshots (not shown) show,
for the peaks corresponding to ions 9 and 11, the
following relative abundance order: 9c> 9a� 9b and
11c> 11a� 11b (see Scheme 3 for structures), which
indicates the following order of co-catalysis efficiency:
BMI.CF3CO2>BMI.BF4�BMI.PF6. Interestingly, this
order is the same as that observed for the relative strengths
of the hydrogen bond between the imidazolium cation and
these anions,22 but it is the opposite to that observed by
Afonso13b and Kim13d in solution. In these cases BMI.PF6

was the most efficient catalyst for the Baylis–Hillman
reaction. Since our data is influenced by factors governing
ion transfer from solution to the gas phase, this inversion
of the co-catalyst efficiency may be due to a missing
additional stabilizing interaction, which could occur
easily in the liquid phase.

On-line monitoring of the same BH reactions by ESI-MS
in the negative ion mode produce not so clear results
since the spectra (not shown) were essentially dominated by
the negatively charged ionic liquid supramolecules
[(BMI)n(X)mþ 1]

�.22 However, the supramolecular species
13� (Scheme 3) were clearly and consistently detected.

In conclusion, in the search for the supramolecular
species responsible for the co-catalytic role of ionic liquids,
we performed on-line monitoring of Baylis–Hilman
reactions by ESI-MS. The search was successful as we
were able to gently ‘fish’ from solution to the gas phase as
well as to detect and characterize, via MS analysis and MS/
MS dissociation, several supramolecular species formed by
coordination of reagents and products as well as protonated
BH zwitterionic intermediates with both the cations and
anions of the ionic liquids. Via competitive experiments, we
found that the order of BH co-catalysis efficiency is:
BMI.CF3CO2>BMI.BF4�BMI.PF6, which is the oppo-
site to that observed by Afonso13b in the liquid phase. Based
on the interception of these unprecedented supramolecular
species, we propose that 1,3-dialkylimidazolium ionic
liquids function as efficient co-catalysts for the BH
reaction:

(i) by activating the aldehyde toward nucleophilic at-
tack via BMIþ coordination (species 8þ) and

(ii) by stabilizing the zwitterionic species that act as the
main BH intermediates through supramolecular co-
ordination (species 9R, 10þ, 11þ, and 12�).
Copyright # 2006 John Wiley & Sons, Ltd.
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